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An Implicit Loop Method for Kinematic Calibration 
and Its Application to Closed-Chain Mechanisms 

Charles W. Wampler, Member, IEEE, John M. Hollerbach, Member, IEEE, and Tatsuo &ai, Member, IEEE 

Abstract- A unified formulation for the calibration of both 
serial-link robots and robotic mechanisms having kinematic 
closed-loops is presented and applied experimentally to two 
6-degree-of-freedom devices: the RSI 6-DOF Hand Controller 
and the MEL ‘Modified Stewart Platform.” The unification is 
based on an equivalence between end-effector measurements and 
constraints imposed by the closure of kinematic loops. Errors 
are allocated to the joints such that the loop equations are 
satisfied exactly, which eliminates the issue of equation scaling 
and simplifies the treatment of multi-loop mechanisms. For the 
experiments reported here, no external measuring devices are 
used; instead we rely on measurements of displacements in some 
of the passive joints of the devices. Using a priori estimates of the 
statistics of the measurement errors and the parameter errors, 
the method estimates the parameters and their accuracy, and 
tests for unmodeled factors. 

I. INTRODUCTION 

HE implicit loop method for kinematic calibration is T founded on an equivalence between displacement mea- 
surements and kinematic closed-loops. For example, docking a 
robot’s end-effector into a mechanical fixture that determines 
its position and orientation is equivalent to a measurement 
of the location of the end-effector by other means, such as 
theodolites or laser interferometry. Clearances between mating 
surfaces of the fixture and end-effector yield uncertainties that 
correspond to measurement error. If we consider the end- 
effector to have a (typically) 6 degree-of-freedom “joint” with 
respect to ground, measurements of the end-effector location 
may be regarded as joint measurements. With this conven- 
tion, the kinematic model of any mechanism-open-chain 
or closed-chain-becomes a statement that the displacements 
around a closed loop must sum to zero. 

Whenever the total number of joint measurements (includ- 
ing the end-effector “joint”) exceeds the number of degrees of 
freedom of motion, the kinematic equations predict dependen- 
cies between the measured quantities. A set of measurements 
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taken at various poses of the mechanism is not likely to satisfy 
these equations exactly; such discrepancies must be explained 
by some combination of measurement error and error in the 
parameters of the kinematic model (including also the sensor 
parameters, such as gains or offsets). We look for the most 
likely combination of such errors that satisfy the kinematic 
equations exactly. The answer depends upon statistical models 
of the distribution of both measurement errors and errors in 
the parameters of the mechanism. The result will be our best 
estimate of the true values of the parameters in light of the 
given measurements. 

The term “implicit loop method” emphasizes that the errors 
enter the kinematic loop equations implicitly, rather than being 
explicit outputs of a conventional input-output formulation. 
By removing the requirement to express errors explicitly, the 
formulation allows the analyst to concentrate on correctly 
attributing all sources of error. For example, a typical formu- 
lation for a serial-link robot finds kinematic parameters that 
minimize the difference between the measured end-effector 
location and the prediction of the model. But the differences 
may in fact be due to errors in the joint angle measurements 
(“input noise,” in statistical parlance). By not acknowledging 
this potentially significant source of error, the parameter 
estimates may be biased. In contrast, the implicit loop method 
puts joint and end-effector measurements on equal footing, 
with weights assigned according to the accuracy of each. A 
more complete picture of the implicit loop method’s place in 
the context of current practice is available in [l]. 

The method is illustrated in experiments on two in-parallel 
mechanisms. Overviews of the robot calibration literature 
[2]-[4] reveal that until recently almost all investigations 
considered only the serial-link case. Calibration of robots with 
closed loops was considered in [5] and 6-in-parallel W R R R  
platforms were studied in [6]. Bennett and Hollerbach [7] 
considered serial-link arms that form a closed loop by inter- 
acting with their environment. This work is similar to ours in 
that the calibration is performed using only measurements of 
the robot’s internal joint motions, with no external devices 
required. These simulation studies have been followed by 
experiments by several researchers [SI, [9]. This paper presents 
a re-analysis of the Hollerbach and Lokhurst experiments and 
also describes a new experiment using the MEL Modified 
Stewart Platform. 

We begin by reviewing our method of analysis, previously 
outlined in [ 101. We use a statistical maximum-likelihood cri- 
terion, formulated to handle the kind of implicit measurement 
equations that arise in closed-chain calibration experiments. 
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The usefulness of this approach is illustrated in its application 
to the two calibration experiments. 

11. METHOD OF ANALYSIS 

The minimization criterion should strike a balance between 
the errors attributed to the various measurements and the 
corrections applied to the parameters. These should be com- 
mensurate with our a priori notions of the accuracy of the 
sensors and the accuracy of the techniques used to build the 
mechanical device. We adopt a statistical approach, based on 
the maximum-likelihood principle. At heart, this is simply 
a least-squares fit, where the weighting factors have been 
chosen according to the variances of the sources of uncertainty 
in the model: measurement error, manufacturing tolerances, 
and joint looseness. Besides providing a rationale for picking 
weighting factors, the statistical approach provides two other 
important results, namely, estimates of the accuracy of the 
fitted parameters, and a measure of the consistency of the 
data with the model. Without checks of this kind, we would 
not know whether the calibration was providing significantly 
improved model parameters and would not have any indication 
whether or not some significant factor had been left out of 
the model. Such checks can be generated through extensive 
Monte Carlo simulation, but a statistical approach can derive 
these results quite straightforwardly from a linear analysis of 
the fitting process. 

In the context of serial-link robots with an explicit model 
of end-effector measurements, some previous formulations 
have allowed for joint angle measurement noise [ll],  [12]. 
Related formulations that allow input noise have appeared 
in the statistical literature under various appellations: “total 
least squares” [ 13, Section 10.31, “error-in-variables models” 
[14], and “orthogonal distance regression” [ 151. Especially for 
closed-loop linkages, we find it convenient to reformulate with 
all variables appearing implicitly. An explicit formulation can 
be considered a special case. The additional inclusion of a 
priori statistics on the parameter corrections has appeared in 
1217 [111. 

A. Implicit Loop Formulation 

the robot as 
Let us assume that we can write the kinematic model of 

f(x, p )  = 0, f :  Rk x R” + R” (1) 

where x E Rk is a vector of motion variables and p E R” is 
the vector of parameters to be calibrated. The vector x may 
include joint and end-effector displacements that we measure, 
as well as backlashes or other small unknown displacements. 
We require IC 2 m and rank (af/ax) = m to guarantee 
that the loop can always be closed. We also assume that 
unmeasured joint motions have been eliminated from the 
kinematic equations.’ Parameters include the geometry of the 
links (such as Denavit-Hartenberg parameters) and parameters 

I If some unmeasured joint displacements cannot be eliminated, they can be 
solved numerically as part of the iterative solution. However, the convergence 
of the method will then be dependent on having sufficiently good initial 
guesses for these joints. 

of the sensors, such as gains or offsets. Each of the m equations 
in f derives from the sum of displacements around a closed 
loop in the mechanism. This is meant to include “loops” where 
one leg of the loop is the measured displacement of the end- 
effector. In this manner, open-loop chains with measurement 
of one or more components of the end-effector displacement 
are treated by the same formulation. 

We will move the robot to various poses, obtaining for each 
pose a measurement of x. Let xi be the value of x at the 
ith pose, which we measure as Ti with measurement error 
Pi, so xi = Ti + &. (An unmeasured noise factor, which we 
might use to model a backlash, for example, can be included 
by setting T to the expected mean.) Throughout all of the 
sample poses, the parameters should be constant, but our initial 
estimates p of the parameters may be in error by fi. That is, 
p = p+fi. For example, p might be the blueprint value of a link 
length and fi would then be the error incurred in manufacturing 
the part. Accordingly, we write the loop equations at the ith 
sample as 

f (x ; ,p )=  f(:;+&,p+$)=O, i = l , . . . , N  (2) 

where N is the number of sample positions. Notice that in 
this implicit model we do not distinguish between “inputs” 
and “outputs,” but rather we have only “measurements,” each 
with an associated variance. 

The objective of the calibration is to find a value for $ 
that will improve the accuracy of our kinematic model. Of all 
possible combinations of parameter error fi and measurement 
noises f i  that agree with our kinematic model, (2), we wish 
to find the most likely combination. Recall that a vector 7 
of Gaussian noise having zero mean and covariance C has a 
probability density function proportional to e-)) [16, 
Section 10.71, and hence maximizing the probability is the 
same as minimizing qTE-lr]. Suppose the errors 3; and fi 
are independent, Gaussian noises with means equal to zero 
and with covariances as follows: Var(3i) = E(k;3T) = E,, 
Var(fi) = E,. Then the maximum-likelihood estimate is the 
minimizer of 

T -1 

N 

(3) 
i=l 

subject to (2). Note that the assumption of zero mean is 
easily satisfied because a known bias can be subtracted out, 
while an unknown one can be included as a parameter. (For 
simplicity, we have assumed the covariance matrix E,, of the 
ith measurement error Pi is the same for all i; hence we write 
E,. To allow covariances that vary with the sample, one need 
only to carry the extra subscript through all of the equations 
that follow.) 

An important feature of this formulation is that we require 
the kinematic equations to be satisfied exactly, accounting 
for any discrepancies implicitly via the measurement and 
parameter errors. This is in contrast to the standard approach 
wherein the residual error in the equations is minimized. In 
the standard approach, the best fit depends on the scaling of 
the various equations, some of which may involve orientation 
while others concern position. Furthermore, we often can 
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write several loop equations of which only a subset are 
linearly independent. The best fit then depends on which 
subset of equations is used. In [6], this was addressed by 
considering sums of squared error of all possible loops. In 
contrast, when the kinematic equations are satisfied exactly, 
the result is independent of equation scaling and independent 
of which set of loop equations we choose. The issue of scaling 
between position and orientation is settled when we specify 
the covariances C, and E,. 

Least-squares estimation has a venerable history, but per- 
haps a few words concerning its validity in the current context 
are warranted. It can be shown that, under the assumption 
of Gaussian distributions and linear model equations, the 
minimum-variance estimate, the maximum-likelihood estimate 
and the (Bayesian) conditional-expected-value estimate are all 
identical [16, Section 12.21. By the Central Limit Theorem 
of probability, the distribution of errors will be approximately 
Gaussian if they are actually the sums of many independent 
errors (none of which dominate). Moreover, a linearization 
of the loop equations around each sample position will be 
reasonably accurate for small enough measurement and pa- 
rameter errors. Hence, the assumptions of Gaussian noise and 
linearity are often plausible, and all three estimation principles 
lead to the same least-squares problem. While one might 
sometimes be able to verify these assumptions in detail, often 
one must fall back on the more basic justification that the least- 
squares approach will usually yield an estimate for which the 
magnitudes of Pi and f i  are not far from the level of error 
we expect and, moreover, the approach is easy to apply and 
to analyze. Since the parameters usually include a variety of 
quantities, such as lengths, angles, sensor gains, and so on, it is 
important that they be scaled appropriately before combining 
them into a least-squares criterion. The statistical approach of 
using variances is a logical way to arrive at such a scaling. 

The most common phenomenon which will cause least- 
squares estimation to degenerate is the presence of “outliers” 
in the data. A single measurement far outside the expected 
deviation can badly skew the results. If outliers are a problem, 
one needs to model the errors with a distribution that is 
broader than Gaussian. Some practical suggestions are given 
in [17, Section 14.61. Another contradiction of the Gaussian 
assumption may arise if backlash is a dominant phenomenon. 
Backlash errors tend to be bimodal, that is, the backlash will 
tend to be at one of two extremes, depending on the last 
direction of travel. A model that accounts for the last direction 
of travel may restore validity of the Gaussian assumption. 

The inclusion of the parameter errors fi in the least-squares 
criterion expresses our belief, prior to performing the calibra- 
tion, that the actual parameters of the device will be close 
to the “blueprint” values. Ideally, the variance C, would 
come from an appraisal of the tolerances that enter into 
the manufacture and assembly of the robot. The calibration 
will adjust the parameters away from the blueprint values 
only to the extent that the measurements produce convincing 
evidence. Previous researchers have sometimes omitted this 
factor (see survey in [2]). Omission of this factor is consistent 
with the assumption that the measurements are very accurate 
compared to the parameter errors, hence Cpl is small relative 

to E;’ and can be ignored. However, there often exist 
combinations of parameter errors that are weakly measured, 
so that the associated measurement errors are effectively 
magnified. Accordingly, it is wise to include C, as a safeguard. 
In the analyses reported below, we find that Cpl is not 
negligible. 

B. Solution 

as a Lagrangian: 
One could formulate the minimization of (3) subject to (2) 

N 

(4) 

where the X i  are Lagrange multipliers. The extremal equations 
for the minimization are obtained from the first derivatives 
of (4). If these were solved by Newton’s method, quadratic 
convergence would be expected, but the second derivatives of 
f would be needed. The following iterative solution procedure 
neglects the second derivatives of f .  This simplifies the 
method at the expense of a slower (linear) rate of convergence. 
It can be shown that the equilibrium conditions for the 
iterations are the same as the extremal equations for the 
Lagrangian. 

Appendix I contains derivations for the following steps. 
First, introduce normalized error variables yi E Rk and 
q E R”, having unit covariances Var ( yi) = I and Var (q) = I. 
Then set 

where the superscript 1/2 means the symmetric square root. 
(In the common case that the individual elements of Pi and 
@ are all independent, and are diagonal matrices, 
whose elements are standard deviations.) Substitution of (5 )  
into (3) gives 

N 

x2 = yTyi + q*q. (6) 
i= l  

Note that the new variables yi and q are dimensionless. 
Begin the iteration with an initial guess of yi = 0 and q = 0. 

At each step, find corrections Ay; and Aq to minimize 

N 

C(Yi + AYiY (Yi + Ay;) + ( q  + W T ( 4  + Aq), (7) 
i=l 

subject to the linearized constraints 

JViAyi + JqiAq = - f(% + Ckf2 yi, p + X i f 2  q ) ,  
i = l , . - . , N  (8) 

where Jyi and Jqi are matrices of partial derivatives obtained 
using the chain rule: 

af - 
J q2 . - - - a p  (xi + C i f 2  yi, p + q )  xkf2. (9) 
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Instead of carrying along a full set of variables {Ayi(i = 
1 . - . , N), Aq}, one may perform an orthogonal decomposi- 
tion on the ith set of constraint equations to eliminate Ayi as 
follows. First, compute a QR-decomposition2 of the Jacobian 
matrices: 

Then, set 

of V associated with the small singular values are the linear 
combinations of the normalized q parameters that are not well 
measured. Noting that DTD = V ( I  + STS)VT,  we write 

(17) 

which shows that the columns of V are independent error 
directions with the ith column having standard deviation 
l / d m .  Since the initial standard deviation in each di- 
rection is 1, we may say that 1/dm is the fraction of the 
initial error remaining after calibration. When the measurement 
is noisy compared to the initial error, si will be small (si << l), 

E, = V[diag(..., l/($ + l), . . . ) I  VT, 

the standard deviation of the associated error direction will 
remain at its original value of 1 ,  and the estimate will be 
unchanged from the “blueprint” values. When the experimental 

whereupon the step in q is the least-squares solution to the 
overconstrained linear system 

and the updated error estimates are 

pi + Ayi = Qi (Ei - Di Aq) . (13) 

Replacing yi with yi + Ayi and q with 4 + A4, (9)-(13) 
can be iterated until convergence. 

C. Error Analysis 

matrix” D and the “augmented fitting matrix” fi as follows: 
In what follows, it is convenient to denote the “fitting 

D = ( D T  I ) T .  (14) 

Neglecting the effects of higher-order terms in f and 
assuming Gaussian distributions, the covariance of the error 
between the estimated q and the true value q* is (see Appendix 

c, = Var(q - q*) = ( D 9 ) - 1 .  (15) 

Reversing the normalization, the accuracy of the estimated 
parameters p compared to their actual values p* is zero mean 
with covariance 

c‘ P = var ( p  - p * )  = C y  E, C y .  

Since DF Di is necessarily positive, semi-definite, one may 
see that every measurement reduces the covariance of the 
estimates, although the actual decrease may be small. In 
particular, if a measurement has a large covariance E,, it will 
give a small Di and the effect on the estimate will also be 
small. 

It is very common that some components of the estimate 
are much less accurate than others. Let the singular value 
decomposition of the fitting matrix be D = U S V T ,  that is, U 
and V are orthogonal matrices and S E has entries 
Sij = 0 (i # j ) ,  Sii = si, s1 2 s2 2 2 s, 2 0. The 
scalars SI, . . . , s, are called the singular values. The columns 

2Any m x n matrix A, m 2 R, can be written as A = QR, where the 
columns of Q are orthonormal and R is an n x n upper triangular matrix. 

data is strong, we will obtain si >> 1 and a standard deviation 
of approximately l/si, 

D. Goodness of Fit 

It is good to check if the results of the estimation agree 
with statistical assumptions of the model. One such measure 
of goodness-of-fit is to compute the value of x 2  from (6) for 
the converged values of (yi, q). If the Gaussian assumptions 
are valid, x2 has an expected value of N m  with standard 
deviation a = m. The exact distribution of x 2  can be 
computed in terms of gamma functions or found in a table of 
statistical functions, but for large enough Nm, say N m  > 30, 
it is well-approximated by a Gaussian distribution. In that case, 
x 2  should fall within f 3 a  of its expected value 99.7% of the 
time, so a result outside of this interval casts serious doubt 
that the experiment is consistent with the model. 

If the x2 is unexpectedly high, the most likely causes are 
either: the variances of the measurement errors or the a priori 
parameter errors have been set too small, or some significant 
factor has been neglected in the model. A third possibility 
is non-Gaussian error distributions, especially outliers. If an 
explanatory factor cannot be found, one can always bring the 
x2 into range by raising the initial variances C, and C p .  
This will have the effect of increasing EL, the estimate of 
the variance in the fitted parameters. However, if the initial 
variances must be raised implausibly high, the results are not 
trustworthy: a better model is needed. 

We can also double check the model by re-calibrating 
several times and comparing the results. Since two experiments 
will never return exactly the same results, the comparison 
should take into account the statistics of the process. Two 
calibration experiments on the same device are not indepen- 
dent, because although they presumably have independent 
measurement errors, they have the same underlying parameter 
errors. The relevant formulas are derived in Appendix 111. 
Let p l  and p 2  be parameters estimated from two different 
experiments, and suppose the covariance for p l  - pz is a full 
rank matrix C ~ J .  Then (p1 - p ~ ) ~ C & ; ( p l  - p z )  is a chi-square 
with n degrees of freedom. 

E. Relation to Kalman Filters 
It is interesting to note the relation of our estimator to 

common forms of the Kalman filter. In filter form, the samples 



are processed sequentially, producing a new estimate after 
every sample. This corresponds to adding one more block to 
(12) after each sample. It is standard to use recursive least- 
squares so that only the most recent block is in storage at 
each sample update, which can become a critical consideration 
if the number of samples becomes large enough. According 
to the classification of [18], if all the blocks are linearized 
around the initial guess, we have the linearized Kalmanjilter. 
If each block is linearized about the current estimate (based 
on all the previous samples), we have the extended Kalman 
jilter. In either case, it is usual to take only one step of (1 2) at 
each sample. We have advocated iterating so that the nonlinear 
effects of the kinematics are more fully taken into account. 

F. Serial-Link Robots 

The most common formulation for the calibration of serial- 
link robots is to find parameter values that minimize (in a least- 
squares sense) the difference between measured end-effector 
locations and the locations predicted by a forward kinematic 
model. Here, “location” means 6 DOF position and orientation 
or any subset of the 6 components thereof. This usual approach 
ignores errors in the joint angle measurements and does not use 
a priori knowledge of the parameter values to dampen weakly 
measured components of the parameter errors. Depending on 
the actual circumstances of the experiment, these omissions 
may be justified and some simplification garnered as a result. 
In the absence of a statistical formulation, care should be 
taken to properly scale position and orientation errors. In our 
formulation, the covariance matrix for measurement errors 
provides this scaling. 

The simplifying assumptions of the standard approach are 
not always valid. Even when an actuator rotation is mea- 
sured with a highly accurate optical encoder, there is often 
a gear train between the encoder and the actual joint, which 
may introduce a significant error to the implied joint angle 
measurement. Furthermore, one may justifiably neglect prior 
knowledge of the statistics of the parameter errors only if 
the experiment is sufficiently well-conditioned and the end- 
effector measurements sufficiently accurate so that all the 
parameters are determined to within an error that is negligible 
compared to that prior knowledge. Of course, it is highly 
desirable for this to be so, but it is not always the case. 
The more general formulation presented here will allow us 
to quantify these assumptions and to proceed when these 
assumptions do not hold. When the assumptions do hold, we 
will get the same results. 

For the case of serial-link arms, similar formulations to ours 
have appeared previously. Zak et al. [ 121 allow for joint-angle 
errors and Renders et al. [ 1 13 additionally include a covariance 
on parameter errors. The latter is also mentioned in [2]. All of 
these linearize the kinematic equations, and will produce the 
same result as the first iteration of our method when equivalent 
assumptions regarding covariances are applied. 

III. CALIBRATION OF THE RSI 6DOF HAND CONTROLLER 

Hollerbach and Lokhurst [8] have reported on experiments 
in calibrating the RSI Hand Controller, which is a six-degree- 

Fig. 1. RSI 6-DOF hand controller. 

of-freedom joystick that measures the motion of a handle in 
a workspace of f 3  in (75 mm) translation and f30” rotation 
in any direction (see Fig. 1). The handle is mounted to an 
endplate that is connected to a stationary base by 3 indentical 
6R serial linkages. Each linkage is a kind of elbow arm with 
a spherical wrist connecting to the endplate. Potentiometers 
measure the two shoulder joint angles and the elbow joint 
angle, from which the positions of the wrist centers, and 
therefore the position and orientation of the handle, can be 
inferred. Since there are a total of 9 angle measurements 
(3 per elbow arm) and the overall mechanism has only 6 
degrees of freedom, the excess 3 measurements can be used to 
calibrate the internal dimensions of the device. The redundant 
information in the measurements is associated with the fact 
that the inferred positions of the wrist points should conform 
to known fixed distances between them, as established by their 
rigid mounting to the endplate. 

This section describes a re-analysis of the experimental 
results of [8], to which we refer the reader for the details of the 
kinematics of the device and the experimental procedure. Two 
main experiments were conducted. In the first, the endplate 
was accurately located (position and orientation) in 12 poses 
using a special fixture. Joint angle readings were recorded 
for each pose. Since the poses are known accurately, this 
experiment provides an excess of 9 measurements per pose 
that can be used for calibration. In the second experiment, 
the handle was manually placed near a pre-planned set of 12 
poses. Since the true location of the handle is unknown in this 
case, there are only 3 extra measurements per pose for use in 
calibration. 

We will use the statistical methods of the previous section 
to do the following: 

1) Replicate Hollerbach and Lokhurst’s results while ad- 
ditionally providing estimates of the accuracy of the 
calibration. 

2) Recompute a calibration using a different model of the 
measurement error. This is to illustrate the flexibility of 
the formulation. 

3) Statistically compare the results of the two experiments 
(fixtured versus free). 

In all cases, we assume that the machining and assembly of 
the mechanism is precise enough that we need only to calibrate 
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the joint angle sensors. Let 0 be a 9 x 1 column of joint angles, 
related to the column of potentiometer readings a by gains IC. 

and offsets ,Off as 

ei = - 2048) + epff, i = 1, . . . , 9, (18) 

where 2048 is the A/D reading at zero volts. During assembly, 
the potentiometers were set to read 0.00 V at the rest position, 
where the nominal offsets are (0.42, -1.97, 0.02) rad for 
each arm. All potentiometers have 340” range and readings 
are recorded using a 12-bit A/D converter, giving a nominal 
gain of -0.00145 rad/bit. The objective of the calibration 
will be to estimate K and Ooff  by computing corrections R 
and 8Off .  We assume standard deviations on these parameter 
errors of 0.00005 rad/bit and 0.05 rad, respectively. These 
were rough estimates chosen such that a f 3 0  gain enor would 
be f10% of the nominal gain and f 3 0  in the offset angles 
would comfortably bracket the manual error in setting the zero 
points of the potentiometers. 

The kinematics of the device can be summarized as follows. 
Let ri(13) be the position of the ith wrist point ( i  = 1, 2, 3) 
in base coordinates, computed from the joint angles using the 
forward kinematics of the ith arm. In the experiments where 
the calibration fixture determines the endplate position and 
orientation, denoted P, R, we may write 

ri(0) - ( P  + Rwi)  = 0, i = 1, 2, 3, (19) 

where wi is the location of the ith wrist point in the frame of 
the endplate. Without the fixture, we have only that the wrist 
points are constrained by the endplate to lie on an equilateral 
triangle of side d, so 

[.;(e)- r j ( e ) ]2  - d2 = 0, 

( 2 7  j )  ={(I, a),  (2, 31, (3, 1)). (20) 

Note that in (20), each loop equation involves two arms, 
and hence the equations are coupled. For simplicity, we 
could ignore this and calibrate one loop at a time, but for 
a given set of measurements we will obtain better accuracy 
by considering all the loops simultaneously. To see this, note 
that when two loops are considered independently on the 
same set of measurements, they predict different parameter and 
measurement errors for their common arm. This contradiction 
is resolved when the two loops are considered simultaneously. 
In (19), the loops are coupled if P and R are ascribed to have 
measurement error, but are independent if these are considered 
exact. 

A. Model 1: Fixtured Calibration 

To establish a baseline set of parameters, let us begin with 
the more accurate experiment using a mechanical fixture to 
accurately locate the end-effector. From (19), we have model 
equations as follows: 

i = l ,  ... 7 N. (21) 

TABLE I 
ESTIMATED PARAMETER CORRECTIONS p FOR RSI HAND CONTROLLER 

Fixture 
H&LI Model 1 

-52 -53 
-30 -32 
-45 -45 

13 13 
29 21 
27 25 

-43 -44 
-4 -4 
30 29 

-17 - 24 
-46 -57 

48 46 
20 13 
12 4 

- 23 - 10 
-8 - 1 1  

1 -7 
2 3 

No Fixture 
H&L Il Model 2 Model 3 

-42 
-40 
- 54 

20 
14 
23 

-43 
-5 
35 

5 
-97 

32 
5 

-3 
- 20 
- 10 
- 10 

8 

- 34 -39 
-45 -44 
-52 - 50 

24 20 
13 20 
22 23 

-36 -39 
-10 -9 

34 32 

13 8 
- 62 -70 

34 29 
4 5 
3 -3 

- 14 -21 
-5 -5 

8 6 
12 5 

Each of these is a vector equation, so we have the equivalent 
of m = 9 scalar equations at each pose i. Hollerbach and 
Lokhurst formulated this problem by explicitly computing 
joint angles corresponding to the pose position and orientation 
(i.e., using the inverse kinematics of the device) and directly 
comparing these to the measured joint angles. Here, the 
inverse kinematics are solved implicitly as part of the fitting 
procedure. Besides not requiring an explicit inverse kinematic 
calculation, the current formulation allows us to easily include 
measurement errors on the pose information according to the 
accuracy of the jig fixture. 

In (18) we assume a measurement error on each joint sensor: 

ai=?ii+&i, i = l , . . . , N  . (22) 

In addition, we assume additive errors on the 3 components 
of Pi and on three roll-pitch-yaw Euler angles $i defining 
Ri = R($i). We further assume that all of these errors can 
be approximated as Gaussian distributions. In the notation - of 
Section 11, we have measurements 5i = (Zi, pi, $i) with 
additive error Pi, both of dimension 15. We also have 18 
nominal parameters p = (K,,,, 19::~)  for which we will 
estimate corrections fi = (A, P). 

With this model, we estimate parameters using the N = 12 
measurements of Hollerbach and Lokhurst in their “open- 
loop” experiment. To follow the formulation of Section 11, we 
need a priori estimates of the accuracy of the measurements. 
Assuming standard deviations of 2.5 bits on 6, 0.01 in on P, 
and 0.005 rad on R, we obtain a chi-square value x2 = 109 
matching the expected value Nm = 108. (To obtain this close 
match, we doubled our initial estimates of the measurement 
error.) The parameter corrections p are listed in Table I as 
“Model 1.” The expected error, given as the square-root of 
the diagonal of the 18 x 18 covariance matrix Cb from (16), is 
listed in Table 11. Correlations between these errors are given 
by the off-diagonal entries of E;, which for brevity we do 
not list. 
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TABLE II 
m G  STAIISIICS 

Model 1 Model 2 Model 3 
actual x 2  109.1“ 19.7 19.3 

expected x z  108 36 36 
99% range 73.8-149.7 17.941.5 17.941.5 

standard errorb 
(mrad) 
“(811) 2 10 9 
“(012) 3 10 10 
“(013) 1 8 7 
4021) 3 9 7 
0(@22)  2 11 10 
“(023) 2 7 7 
“(031) 2 9 9 
4832) 2 11 10 
~ ( 8 ~ ~ )  1 7 7 

(pradlbit) 
“(kii) 9 16 15 
c (k i z )  7 29 27 

“(kl3) 5 16 16 

4k21)  9 17 16 
c7(kz2) 6 25 23 
o(k23) 8 15 14 
“(k3l) 9 17 18 
“(k32) 7 30 31 
“(IC331 5 15 15 

maximum 48.7 44.4 39.8 
minimum 4.8 0.7 0.8 

Singular valuesC 

“Scaled a posteriori to match expected value. 
bSquare mot of diagonal of covariance E;. 

For comparison, we may re-construct the estimate of Holler- 
bach and Lokhurst by assuming the calibration fixture is exact 
and placing no weight on our a priori knowledge of the 
parameter values. That is, 4 = & and C ,  4 03. (Numerically 
the latter was accomplished by setting C, to lo5 times its 
former value.) The result is given in Table I as “H&L I.” With 
the same a priori variances as above, the chi-square value is 
137 compared to an expected value of N m  - n = 90, which is 
rather high. To explain this high value, we must presume either 
that the measurement errors are even worse (approx. 3 bits), 
the fixture is not exact (as in Model l), or some new source 
of error (e.g.. link length errors or backlashes). In any case, 
the estimates H&L I and Model 1 agree well to the accuracy 
reported in Table 11, with the worst disagreement in lcI2 being 
1.6 times the quoted standard error. 

For our Model 1, the maximum and minimum singular 
values of the fitting matrix D are 48.7 and 4.83, respectively, 
which gives a very mild condition number of 10. As discussed 
at (17), these singular values imply that the parameter error 
has been reduced to just 2% of its initial value in the best 
direction and to 20% of the initial value in the most poorly 
measured direction. The sizes lap( of the iterative steps are 
2.5, 3.le-1, 8.2e-2, 4.3e-2, etc., which is a rather slow, linear 
rate of convergence. 

B. Model 2: Wrist Errors 

Next we consider measurements taken without the aid of 
the calibration fixture. A variety of errors (e.g., looseness in 

Singular values of fitting matrix D.  

joints, link dimension errors, sensor noise) will prevent strict 
equality in (20). One approach is to lump these together into 
a single error term for each equation, giving three equations 
per sample pose as follows: 

In the experiment, the number of poses was N = 12. 
If the error terms Q; can be approximated as Gaussian 
distributions, we may apply the formulation of Section I1 with 
the following correspondences: Ti = 0, bi = ( ~ l i ,  E Z ~ ,  ~ g i ) ,  

p = (K,,,, e;:,), and 6 = ( k ,  eoff). Because of the lumped 
error model, the Jacobian matrix dfi/dz; is the identity 
matrix, and (9)-(13) could be simplified to save computer time. 

With this model we estimate parameters using the N = 12 
measurements of Hollerbach and Lokhurst in their “closed- 
loop” experiment. Lacking a good estimate of the variance of 
2,  we proceeded by trial-and-error to determine what value 
would give a consistent chi-square value for the fit. The units 
of the errors Eki are in2. Assuming the Eki to be independent 
with equal variances, we found after a few trials that a standard 
deviation of 0.1 in2 gave x 2  = 19.7. The expected value for 
x 2  is 3 . 12 = 36 with standard deviation 6fi x 8.5, so this 
is in the right range. 

Some rough calculations can check if 0.1 in2 is plausible. 
If backlash at each wrist joint contributes a standard deviation 
of to the distance d, the resulting standard deviation in 
d2 is 2 f i d a .  Accordingly, since d M 2.6 in, a backlash of 
c = 0.014 in is sufficient to account for the 0.1 in2 variance 
in d2. Alternatively, we can reflect the wrist errors back to the 
joint angles. Roughly speaking, the wrist point is about 4 in 
from the joint axes (in the home position), which works out 
to angular errors in the range 0.002-0.003 rad. That is about 
2 bits at the A D  converters, which is not far from the 2.5 bits 
estimated in Model 1. A more direct and detailed analysis of 
joint sensor errors is presented in the next section. 

As before, we can reconstruct the results of Hollerbach 
and Lokhurst by setting C, 4 03. These results are listed 
in Table I under the heading “H&L II” along side the Model 2 
results. These calibrations are computed from the same set of 
measurements, but Hollerbach and Lokhurst did not include 
any weight on the nominal values of the parameters. The 
two sets of parameters are substantially the same. The minor 
differences between the two results is attributable to the more 
poorly measured combinations of parameters, for which the 
experimental uncertainty is nearly as big or bigger than the 
initial uncertainty in the parameters. 

Table I1 summarizes the uncertainty in the results. Since 
the covariance matrix for the parameter estimation error is 
18 x 18, we report only the square root of its diagonal elements. 
Also, the maximum and minimum singular values of the fitting 
matrix D are listed. From these and (17), we see that in the 
most accurately measured direction, the parameter error was 
reduced to 2.3% of its initial value, while in the worst direction 
it remained at 82.4% of the initial value. 
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As an aside we note that the step size lAq1 for the first 
five iterative steps are 2.5, 9.0e-1, l.le-2, 8.7e-5, and 1.6e-6, 
which shows a linear rate of convergence, as expected. 

C. Model 3: Joint Sensor Errors 

Instead of lumped errors at the wrist points, an alternative 
model is to attribute a measurement error to each joint sensor. 
That is, use (22) as in Model 1. The model equations are 

(24) 

where errors enter via 6; and (18), (22). Accordingly, in the 
notation of Section 11, we have Ti = Z;, Pi  = &, and p ,  l j  
as before. 

We proceed to analyze the same N = 12 measurement 
samples as in the preceding section. After assigning a variance 
to the sensor measurement error, we use the same parameter 
variances as in Section 111-A and compute the maximum- 
likelihood parameter corrections. Using the same standard 
deviation of 2.5 bits that balanced the chi-square in Model 
1, we now get a chi-square of 19.3 compared to an expected 
value of 36. The detailed results are listed in Tables I and 11. 
The covariance estimates are very similar to those of Model 
2, predicting final parameter errors to be 2.5% and 78.0% of 
the initial value for the best and worst directions, respectively. 
The sizes of the iterative steps are also similar to those of 
Model 2, namely, 2.6, 9.le-1, 1.5e-2, 3.6e-4, and 1.2e-5. 

1 [ T o i )  - ~2(e i ) i2  - d2 
ji = [ T 2 ( e i )  - T3(ei)12 - d2 = 0, 

[T3(&)  - T l ( e i ) l 2  - d2 
1 N ,  i =  1, ... 

{ 

D. Comparison 

Two kinds of comparison between the calibrations with and 
without fixturing are of interest. First, we would like to know 
if the results are consistent with each other. That is, do the 
two approaches yield the same parameter values to within the 
predicted accuracy? Second, we are interested in the relative 
accuracy of the two calibrations. 

From Table I we see that the calibration is robust in the sense 
that the various models all produce substantially the same 
parameter corrections. For instance, the difference between 
the estimates from Models 1 and 2 (Table I) is generally less 
than the standard deviation reported for Model 2 in Table I1 
and, in the worst case, only 2.3 times the standard deviation. 
The comparison between Models 1 and 3 is similar. To be 
more exact, we may compare the results using the covariance 
formulas found in Appendix 111. In particular, “Scenario 1” 
is of interest because the results of Model 1 come from a 
separate set of measurements than those reported for Models 

should be a chi-square with 18 degrees of freedom. Comparing 
Models 1 and 2 gives x2 = 32, which is at the upper limit 
of plausibility (probability of being 32 or larger is about 2%). 
Comparing Models 1 and 3 give x2 = 27, which one would 
expect to exceed about 5% of the time. 

Although the final values are not reported in Table I, Model 
3 was also run on the fixtured data set. In this case, it is using a 
subset of the measurements used by Model 1, so we apply the 

2 and 3. The quantity (PI - P Z ) ~ [ V ~ ~ ( P I  - P Z ) ] - ~ ( P I  - P Z )  

1 o2 
Model 1 

D 

lo.b 2 4 6 8 10 12 14 16 
i 

Fig. 2. Singular values for Models 1 and 3. 

3 

covariance formula from Scenario 2 of Appendix 111. (Model 2 
can also compute a calibration on this data set, but the results 
cannot be directly compared using the same formulas because 
of the different models of measurement error between Models 
1 and 2.) This time we get a chi-square of 11, which is on the 
low side of 18. However, more than 5% of random samples 
would be so small, so it is not unreasonable. All in all, Model 
3 gives results that are consistent with the results of Model 
1. The difference in the two chi-square values (27 versus 11) 
may indicate that there was some drift in the parameter values 
between the two experiments. Such a drift was the original 
motivation for developing a fixtureless calibration method: 
one can easily recalibrate whenever too much sensor drift has 
accumulated. However, the difference could also be simply 
due to chance or possibly due to figments of the modeling and 
analysis (especially since different covariance formulas apply 
in the two cases). 

The relative accuracies of the calibrations can be judged 
from Table 11. We see that Models 2 and 3 predict virtually 
the same accuracy, while Model 1 is 1.5 to 6 times more 
accurate (it varies for different parameters). A different view 
is presented in Fig. 2 where the singular values s; of D and 
Si = d m  of D are plotted for Models 1 and 3. Even 
the most weakly measured directions of parameter error for 
Model 1 are significantly more accurate than the initial error, 
so that si and ii  are virtually identical. This is not true for 
Model 3, where in the weakest direction the initial error is 
improved only slightly. We also see that the first 6 singular 
values for the two experiments are very close, but Model 1 
is significantly more accurate thereafter. Of course, due to the 
fixture, Model 1 collects the equivalent of 9 measurements 
at each pose versus only 3 for Model 3. However, without 
the need for a fixture, more poses could easily be sampled to 
increase the accuracy of Model 3. 

It is of interest to note that the slow convergence rate for 
Model 1 as compared to Models 2 and 3 is related to the 
pose set used with the fixture. When Model 2 or 3 is applied 
to the fixtured pose set, a slower rate of convergence also 
ensues. This correlates with the fact that the condition number 
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moo 

Fig. 3. MEL in-parallel manipulator. 

of D for these models is higher for the fixtured pose set than 
the fixtureless set. The fixtureless set of poses was selected 
to increase the zone of convergence for the approach of [8]. 
Here, it has the effect of both speeding up the convergence 
and making the calibration more accurate. 

IV. CALIBRATION OF THE MEL IN-PARALLEL ROBOT 
One of the attractive features of in-parallel robot structures 

is the potential for higher accuracy as compared to serial-link 
designs, primarily due to the higher stiffness of a closed-loop 
structure compared to a cantilever. However, this stiffness does 
not translate directly into better accuracy, rather it implies high 
repeatability. For example, simulation studies indicate that the 
manufacturing tolerances one might expect from constructing 
the relatively large base of an in-parallel robot can lead to 
significant inaccuracy [ 191. Good calibration of the kinematic 
model is necessary to account for such errors. 

The MEL Modified Stewart Platform is shown schemati- 
cally in Fig. 3. Planar base and end-effector links are con- 
nected by 6 legs acting in parallel. Each leg is type RRPRRR, 
where each prismatic joint is actively controlled via an electric 
motor and ballscrew, and the rotational joints are passive. 
Nominally, the first two joints intersect to form a universal 
joint, and the last three intersect to form a spherical joint. 
The placement of the joints is unconventional, with the aim 
of improving the dexterity of the device [20]. 

The rotational joints on one leg are instrumented using 
potentiometers and 12-bit A D  converters, providing measure- 
ments of the end-effector location via the forward kinematics 
of the serial linkage formed by the leg. This leg was originally 
instrumented as a simple solution to the forward kinematics 
problem, which, if only the leg lengths are measured, is 
difficult to solve and has multiple solutions. In comparison, the 
forward kinematics of the single leg is simple when its joint 
angles are known. After computing an end-effector location 
using this “measuring leg,” the result can be used as the initial 

2500 

TABLE III 
NOMINAL LCCATIONS OF LEG ENDPOINTS FOR MEL ROBOT. ORIGINS ARE AT 

THE CENTERS OF THE BASE AND ENDPLATE CIRCLES SHOWN IN FIG. 3. ANGLES 
ARE MEASURED FROM THE R E S P E ~ V E  X-AXES CONSISTENT WITH (25) 

Base Bi B2 B3 B4 B5 B6 
radius (mm) 800 600 800 600 800 600 
angle (deg) -90 -90 30 30 150 150 
End E1 Ez E3 E4 E5 E6 
radius (mm) 250 100 250 100 250 100 
angle (deg) 0 180 120 -60 -120 60 

guess to a more exact iterative solution that matches the end- 
effector location to the remaining leg-length measurements. 

The measuring leg can also be used to calibrate the robot. 
However, we must consider the accuracy of the joint mea- 
surements in appraising the accuracy of the calibration result. 
Moreover, in the case that the measurements yield less accu- 
racy than the original “blueprint” parameter value, we wish to 
retain the original value. We have seen that the formulation of 
this paper accommodates this concern. 

The nominal kinematics are as follows. The joint axes at the 
universal and the spherical joint of each leg i (i = 1, . . . , 6) 
are assumed to intersect in points Bi in the base plate and 
points Ei in the endplate, respectively. The leg lengths e; = 
I(Ei - Bill are measured using encoders on the drive motors. 
The base and endplate are both planar, with endpoints given 
in polar coordinates in Table 111. Leg 1 is the measuring leg, 
having joint rotations of 81, 02 at the universal joint at the base, 
leg extension of el, and rotation angles of 83, 84, 85 at the 
spherical joint. In addition, we allow for misalignments in the 
directions of the joint axes due to manufacturing and assembly 
errors by including “twist” angles PI,  . , ,&, all nominally 
zero. (These are the same as Denavit-Hartenburg twist angles, 
except p4, P 5  which correspond to Hayati parameters [31, [21], 
since the joint axes for and 8s are nominally parallel.) Let 
R,, R,, R, be rotations around the x, y, z axes, respectively, 
and let T, be a translation along the z-axis, all of which 
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we may think of as being standard 4 x 4 homogeneous 
tranformation matrices. Accordingly, the kinematic model of 
the measuring leg can be described succinctly by the sequence 
of rotations and translations from base to endplate as 

4 6 ,  P, el)  = 
Rz (P1 )Rz (el 1% (P2)Ry (82)Rz ( P 3  )Tz (el)% (P4)Ry ( P 5 )  

‘ Rz Rz ( P 6 )  Ry ) Rz (07) Rz ) Rz ( P S I .  (25) 

As a point of reference for checking, we note that the home 
position of the robot is defined to be 

(el, “ ‘ ,  C 6 )  = 
(1423.0, 1301.0, 1423.0, 1301.0, 1423.0, 1301.0) 

for which the corresponding angles are 

(6’1, ’ ” ,  6’5) = 
(-0.6708, -0.1766, 3.1416, -0.1776, -0.6078). 

All lengths are measured in millimeters (mm) and angles in 
radian. In the home position (Fig. 3), the endplate is parallel 
to the base plate and located 11 50 mm from it. 

A. Initial Error Estimates 

To use the maximum-likelihood formulation, we need some 
initial estimates of the variances of the measurements and the 
parameter values. To get a rough idea of the variances of the 
measurements, we performed some preliminary experiments 
using a digital micrometer. First, we measured joint angle 6’1 
using the potentiometer permanently mounted on the robot 
and at the same time took readings with the micrometer 
of the displacement of a planar surface on the side of the 
measuring leg. The leg was rotated through a range of 0.5 
rad and we took 3 readings at each of 22 positions. After 
compensating for a slight geometric nonlinearity to convert the 
micrometer readings into equivalent angles, we used a least- 
squares fit to estimate the gain and offset of the potentiometer 
measurements. This gave a gain of 7.42e-4 rad/bit for the 
sensor with a residual error having standard deviation of 7.le-4 
rad. That is, the standard deviation of the error is on the order 
of 1 bit. Also, the measured gain is close to the nominal gain 
of 7.39e-4 rad/bit, and this gives us a rough idea of the amount 
of error to expect in sensor gains. Unfortunately, only the first 
angle could be tested in this fashion, but since all joints use the 
same sensor hardware, we will assume they all have the same 
variance. Note that angular errors of 7e-4 rad when multiplied 
by leg lengths on the order of 1100 mm to 1600 mm yield 
positional errors on the order of 1 mm. 

A potential source of variance in the leg length readings 
is backlash in the universal and spherical joints. To check 
this, a second experiment used the micrometer to measure 
displacements of the endplate as various transient disturbing 
forces were applied. After the force was removed and vibra- 
tions stopped, the displacement consistently settled to within 
0.03 mm of the initial position. This implies that the backlash 
is negligible compared to the error expected from the joint 
angle sensors. 

Finally, we noted that thermal drift in the joint sensors was 
significant (as much as 5 bits over several hours). By collecting 
a full set of samples within a 10 minute interval, the drift is 
made negligible. 

B. Modeling 

At each sample pose, we measure the joint angles 
(01, . . . , 05) and the leg lengths (el, . . , &). The kinematics 
of the device give 5 loop equations at each of N sample 
poses as follows 

f i  ={e; - IlBl - Bj + 4 0 ,  P,&1 )(Ej - E1)1I2 = 0, 
j = 2 , 3 , 4 , 5 , 6 } ,  i = l , - . - , N ,  (26) 

where the transformation matrix A(0, p, el)  is as given in 
(25). Moreover, we do not measure (6’1, . . . , 6’5) directly, but 
rather, we obtain A/D readings ((~1, e .  . , a5) which must be 
converted to angles by applying the correct gains and offsets, 
that is, 

(27) 

Using the notation of Section II, we have measurements 
z = ((~1, ‘ e . ,  ( ~ 5 ,  el ,  ..., &).  As in the case of the RSI 
Hand Controller experiment, we will calibrate all the legs 
simultaneously to maximize accuracy. We may arbitrarily pick 
B1 and El as the origin points for the base and end plate 
coordinate systems. Then we have the set of parameters 

ei = Ki(Yi  +6’pff, i = 1, ... , 5. 

- 

pT(B2,  ” ’ ,  B6, E2, ” * ,  E6, 01, “ * > P S i  

K1, . . . , K 5 ,  qff, . . . , egff, e;.ff, . . . , e;ff). 
These have corresponding errors P and 6. The joint positions 

Bz, . . . , E6 have three components each. Thus, there are 54 
parameter errors to be estimated. 

Not all of the parameters are independently observable. 
The initial twist p1 and angle offset are indistinguishable 
from certain displacements of B2, . . . , B6 corresponding to 
rigid-body rotations of the base. A similar confounding exists 
between angles ,& and egff and certain rigid-body rotations of 
E2, . . . , E6. Consequently, the parameter set could be reduced 
by 4, but this requires some care. For example, the angles 
PI ,  eTff could be dropped from the parameter set, but then 
the a priori variances given for errors in the locations of 
the base points would have to include the proper correlation 
to account for the rotational errors. It is simpler to keep 
all of the parameters and let the numerical method separate 
the dependent and independent errors. We have altogether 54 
parameters, of which 50 are independently observable. 

The base point errors are not independent. The base plate 
is constructed of a set of steel U-beams welded together. The 
base points are mounted in pairs along three beams which 
radiate from a central hub. A small angular error in the 
orientation of one of these beams results in a relatively large 
error common to both base points it carries. Superimposed 
on this are the independent errors in placing the base pivots 
onto the beam. We assumed the large common error to have 
standard deviation of 4 mm and superimposed independent 
errors of 1 mm. Since BI is zero by definition, its neighbor, 
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B2, is subject only to the 1 mm deviation. Denoting the 3 x 3 
identity matrix as 13. we have the following variances and 
covariances: 

var(B2) = 1 3 ,  

var(B;) = 1713, (i = 3,  4, 5, 6) 
cov(B3, b,) =coV(B5, B6) zr 1613. 

The remaining parameter errors were all assumed to be 
independent. The standard deviations were as follows: 3 mm 
for each component of E2, ... , &, 100 bits for the angle 
offset, 10 mm for leg length offset, 0.08 radian for twist angles, 
10% for the sensor gain. 

For the sensor errors, we assumed 2 bits for the angle 
measurements and 0.03 mm for the leg lengths. The latter 
is so small that it can be neglected with virtually no change i 

in the results. Fig. 4. Singular values for calibration of the MEL in-parallel manipulator. 

C. Pose Selection and Sampling Procedure 

At each pose, there are 11 measurements, which is an excess 
of five beyond the six degrees of freedom of the device. Conse- 
quently, 20 poses provide a total of 100 excess measurements 
from which we will extract the 50 independent parameters. 
Such a twice-over sampling is a minimally acceptable level of 
oversampling, which we thought would be sufficient for our 
investigative study. 

Of the 20 poses, we chose the first 13 to lie near the limit 
of one or more of the leg lengths, each of which may vary 
from 1.18 m to 1.6 m. These poses fall near the positional 
boundaries of the workspace. The last 7 lie near the center 
of the workspace, with angular displacements near the limits 
allowed by link collisions. The poses were not optimized with 
respect to the conditioning of the fitting matrix, although this 
would most likely have improved the result. 

The robot was moved to each successive pose under com- 
puter control. To be sure that the robot was at rest, the samples 
were not recorded until the leg readings from two samples 
taken 1 s apart agreed to full precision. Due to integral control, 
the leg readings consistently settled to within 0.001 mm of 
the commanded values. By taking samples at steady state, we 
avoid errors of dynamic deflection of the robot structure and 
errors due to asynchronous measurement of the leg lengths 
and joint angles. 

The sampling process takes about 5 min, mostly spent 
waiting for steady state. Three such samples taken within 25 
min agreed with each other to within f l  bit. These sample 
sets were taken by progressing through the poses in exactly 
the same order. Subsequently we have realized that a random 
progression would have been preferable, as the effects of 
backlash would then have been made more apparent. 

To remove the bulk of sensor drift error, an offset was 
computed for each joint to make the first pose agree exactly 
with the nominal kinematic model. This pose corresponds to 
the robot’s “home” position. 

D. Results and Discussion 

Fig. 4 shows the singular values for the fitting matrix D and 
the augmented fitting matrix D. We see that the experiment 

reduces the first 20 error components to less than 10% of their 
initial values. After that the effectiveness of the calibration 
continues to decay, and beyond the 40th error component vir- 
tually no information is gained. Singular values 051, . . . , 054 

were computed as less than which numerically verifies 
that 4” of freedom in the model are unobservable. It is 
not necessary to reduce the model by removing the poorly 
identified parameters; this is done automatically by the least- 
squares weighting of the initial parameter variances. This is 
seen to happen in the figure where the two sets of singular 
values separate, and those of D approach unity (10’). The final 
4 unobservable parameter combinations will remain exactly at 
their initial values. 

The expected value of x2 is 100 with standard deviation 
14.1. The experiment gives a value of x2 = 128.0, which is 
about 2 standard deviations from the expected value. We have 
forced the x2 to a reasonable value by inflating the standard 
deviation of the angle measurements to 2 bits, as opposed to 
the 1 bit deviation we measured in the preliminary experiment 
in Section IV-A. In making this adjustment, the variance E, 
that we compute becomes larger and more accurately reflects 
the actual accuracy of the experiment. 

Of the 54 parameters, only 36 have an effect on the accuracy 
of the calibrated robot: these are the 30 coordinates of the 
pivot points and the 6 leg length offsets. The other 18 are 
all parameters of the measuring leg (potentiometer gains and 
offsets, joint twists), which we need for the calibration but 
do not use for robot control. The covariance matrix for 
the final parameter errors Ea (16) is a symmetric 54 x 54 
matrix containing the complete picture of the accuracy of 
the experiment. However, to briefly summarize the results, 
we may compare the entries of ( ~ ; ) 1 / 2  with the initial 
particularly directing our attention to the diagonal entries. By 
this measure, we see that the base pivot uncertainties have 
been reduced from 3.4 mm to approximately 2.3-2.9 mm, the 
endplate pivots from 3 mm to 1.3-2 mm and the leg length 
offsets from 10 mm to about 4 mm. The uncertainty in the 
pivot locations is commensurate with the sensor accuracy, 
because a 2 bit sensor error translates into about 2 mm 
of positional error. As for the measuring leg, potentiometer 



WAMPLER et al.: IMPLICIT LOOP METHOD FOR KINEMATIC CALIBRATION 721 

offsets were reduced from 100 bits to 8-27 bits, potentiometer 
gains from 10% uncertainty to 0.2%, and twist angles from 
0.08 rad to 0.002 rad. 

It may be instructive to note that in our first attempts at 
computing a calibration, the parameter set was smaller: it had 
only 50 parameters, all observable. This was accomplished 
by constraining the coordinates of certain base and endplate 
pivots. Also, the base pivot variances were all assumed in- 
dependent with standard deviation 3 mm. These seemingly 
innocuous differences had a profound effect: the angle error 
had to be inflated to 5 bits to bring x2 down to 124. Otherwise 
the variance of the base pivots would have needed to be 
implausibly large (> 10 mm). So the chi-square check indicated 
definitively that the initial model was insufficient. 

Even now, the necessity of inflating the angle errors to 2 bits 
indicates that there may be some missing unmodeled effect. 
For example, twist angles Ry(@0) and RY(Ps) pre- and post- 
multiplying A(0,  p, [,) could be considered. There are many 
more kinematic parameters that are possible if we consider that 
the axes in the spherical joints may not truly intersect. Some 
other possible factors are backlash, elastic deformation due to 
gravity, or eccentricities in the mounting of the potentiometers. 

The greatest improvement in the calibration would not 
come from explaining the source of this last bit of error. 
Instead it would come from fundamental improvements in the 
experiment itself. The most important action would be to im- 
prove the joint angle sensors. We made use of potentiometers 
that had been installed for a different purpose requiring less 
accuracy. Another important action would be to improve the 
pose selection and perhaps include more poses. After these 
have been done, one could determine with greater confidence 
whether or not a significant unmodeled factor is present. It 
may then become the limiting factor in the accuracy of the 
calibration. 

v. SUMMARY AND CONCLUSION 

We have presented a method of analysis for calibrating 
mechanisms having closed kinematic chains. It applies equally 
well to open-chain mechanisms with endpoint sensing. Mea- 
surement errors and kinematic errors (such as backlash) may 
enter the kinematic equations in implicit form, hence we call 
the formulation an “implicit loop method.” The methodol- 
ogy has been demonstrated in experiments on two different 
devices, thus illustrating the generality of the approach and 
exploring its behavior on real examples. Features of the 
method include: 

initial variance estimates provide rational scaling factors 
for distributing errors between multiple sources, 
“input” and “output” errors are treated in a uniform 
manner, 
the use of prior estimates on the parameters damps out 
poorly calibrated parameters or combinations of parame- 
ters, hence the inclusion of an insignificant parameter has 
little or no effect on the final result, 
the method calculates the variance of the parameter 
estimates, 
and a chi-square calculation tests the goodness of fit of 
the model, helping to detect unmodeled factors. 

The method is based on the maximum-likelihood principle 
that results in a nonlinear least-squares problem to be solved. 
We outline an iterative numerical scheme, which displays a 
linear rate of convergence on the experimental problems. 

To illustrate the method, we re-analyze the experimental 
data of [8] for the RSI Hand Controller. The flexibility of 
the approach is demonstrated by performing the calibration 
using two different models of the error: one lumps the errors 
at the wrist points in the manner of [8], whereas the other 
attributes the errors to the joint measurements. A calibration 
using only the joint angle measurements was found to be 
consistent, although less accurate, than a calibration for the 
same experiment using additional pose information from a 
fixturing device. The difference is attributable to the 6 extra 
measurements per pose provided by the fixture. The results 
for a second set of experimental data (not using the fixture 
poses) are also consistent with the fixtured result, although a 
chi-square test shows a larger discrepancy in this case. This 
may be due to a slight drift in the potentiometers between 
the experiments: the motivation for the calibration was to 
compensate for this kind of drift. 

The MEL in-parallel robot has also been calibrated by this 
method. Although the resolution of the sensors was found 
to be insufficient to perform a highly accurate calibration, 
the applicability of the method is demonstrated. Our initial 
model was shown to be insufficient to meet the goodness 
of fit criterion. The explanation was found to be related to 
small angular errors in mounting the measuring leg on the 
base frame. These errors are not independently observable 
from certain rigid-body displacements of the base frame. This 
could have been addressed without increasing the parameter 
set by introducing the appropriate correlated uncertainty in 
the pivot locations, but since the formulation is impervious to 
overparameterization, it was much simpler to directly add the 
angular parameters to the model. This illustrates one of the 
primary features of the approach. 

The work on the MEL arm neglected the important issue 
of pose selection. However, for the RSI Hand Controller, 
Hollerbach and Lokhurst [8] addressed pose selection as a 
means of improving the convergence zone of their closed- 
loop calibration. We find that the poses they selected on this 
basis also increase the smallest singular value of the fitting 
matrix, which has the effect of decreasing the error in the 
calibrated parameters. Pose selection criteria and algorithms 
as discussed in [22]-[24] require only minor modifications 
to be applied for the implicit loop formulation. Whatever 
approach is used in this regard, once a set of poses has 
been chosen and a set of measurements has been taken, 
the methods described herein form a good methodology for 
computing the calibrated parameters and testing the validity 
of the model. 

As a final caveat, we note that a goodness-of-fit calculation 
checks the consistency between experiment and mathematical 
model. As such, a bad fit clearly indicates a problem, but a 
good fit does not guarantee success. If the experiment includes 
direct measurement of the end-effector, the residuals on those 
measurements give a strong test of success. If there are no such 
measurements, as can be the case with closed-loop linkages, 
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independent experiments may be advisable to verify the final 11. APPROXIMATE COVARIANCE OF THE ESTIMATE 
accuracy. 

APPENDIXES: DERIVATIONS 

I. I m u m  METHOD 

Following the notation of Section 11, collect all of the 
normalized measurement errors yi into one N k  x 1 column y = 
(yT yg)'. Similarly, collect all the residuals f(xi, p) 
into one N m  x 1 column F. Then we may rewrite the 
minimization problem of (7)-(8) as: find Ay and Aq to 
minimize 

Recall that the mean of an n x 1 vector of random variables 
x is denoted E ( s )  (expected value). The covariance of x is 
an n x n matrix Var(x) = E { [ x  - E(x)][z  - If A 
is a constant matrix, then E(Ax) = AE(x) and Var(Ax) = 

Let us assume that the estimate z = (y , q )  and the true value 
z* = (y*, q*) are sufficiently small so that the linearization of 
the kinematic equations F about the initial guess (y, q )  = 0 is 
accurate. Then, denoting the Jacobian matrix J = ( Jy Jq ), 
we have the linearization 

A V X ( ~ ) A ~ .  

F ( z * )  = F(0)  + Jz* .  

subject to the linearized constraints F(0) = -Jz*.  (A.lO) 

From (A.l)-(A.2), the first step of the iterative procedure 

(A.11) 

which is the final estimate when F is linear. Together these 
give the error in the estimate as 

z - z* = ( J + J  - I ) z* .  (A.12) 

From this we have that the estimation error has zero mean: 

(A. 13) 

JyAy + JqAq = -F, (A.2) 

where the Jacobian matrices have block entries in accordance 
with (8). Using the QR-decomposition QR = J F ,  we may 
pre-multiply both sides of (A.2) by the nonsingular matrix 
R-T to get 

gives 

z = -J+F(O), 

QTAy + DAq = - R-T F, ('4.3) 

where D = RFT Jq. Matrix Q is an N k  x N m  matrix (k 2 m) 
having orthogonal columns. We can complete the basis with an E(. - z * )  = ( J + J  - I ) E ( z * )  = 0, 

that is, the estimated is unbiased. Nk x N(k - m) matrix Q' such that (Q Q' ) is orthogonal. 
Then the minimization criterion (A.l) may be written as We want to isolate the covariance matrix of the error in 

I I Q T ( ~  + aY)1)2 + I I Q ' T ( ~  + ~ ~ ) 1 1 2  + 1 1 ~  + ~ ~ 1 1 2 .  (A.4) the estimates of the parameters q = (0 I ) z ,  which Can be 
written using (A.12) as 

Since QIT(y + Ay) does not appear in the constraint, the 

Q"(y + Ay) = 0. (A.5) 

Re-"ging (A-3) and adding QTY to both Sides, we have 

Var(q - q*) = (0 I ) ( J + J  - I) 
minimum will have 

. Var(Z*)(J+J - I) T ( : ) .  (A.14) 

But z* are normalized error variables (see Section 11-B), 

the identity J + J  = ( A J ) + ( A J ) ,  and in particular, if Jy is 
nonsingular, this is true for A = R-T. So we may replace J 
in (A.14) With K T  J = (QT D ) a  Using these facts and the 
relations J+ = JT(JJT)-l and QTQ = I, we write 

so = I. F~~ any nonsingular matrix A,  we have 

QT(y + Ay) = QTy - DAq - R-TF. (A.6) 

Substitute (ASt(A.6) into (A.4) to express the minimiza- 
tion criterion as 

This is now an unconstrained minimization involving only 
Aq. Its solution is the same as the least-squares solution of 

Using the identity DT(I  + DDT)-' = ( D T D  + I)"DT: 
(A-15) becomes 

the linear system (0 I ) ( J + J  - I )  = ( D ~ D  + I ) - ~ ( D T Q ~  - I ) .  ( ~ . i 6 )  

Substituting this expression twice into (A.14), we obtain ( y  ) = (QTY - R-TF ). (A.@ 
-4  var(q - 4*) = ( D ~ D  + I ) - ~ ( D ~ D  + I ) ( D ~ D  + I ) - ~  

Combining (A.5)-(A.6) into one matrix equation and pre- = (DTD + I)-'. (A. 17) 

By the definition of the augmented fitting matrix fi [Section 

Var(q - q*) = (my, (A. 18) 

multiplying by (Q Q'), one obtains 

y + Ay = Q(QTy - DAq - R-TF). ( ~ - 9 )  11-C, (14)] this is 

After sorting out the block form of the equations, one sees 
that (A.8)4A.9) are identical to (12)413) of Section 11-B. which justifies (15) of Section 11-C. 
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111. COMPARING EXPERIMENTS Scenario 2: Parameter estimate q1 is found using a subset 
of the measurements used for estimate q2,  each time starting 
from the Same U priori infOrIllatiOll. h this case, we have 

we want to establish chi-square for judging whether 
two calibration experiments on the same device have obtained 
the same result to within the predicted covariance of the 
estimation procedure. Let the measurement errors for the A1 = (DTDl + I)-l(D?Q? 0 -1) 
two experiments be 9; and y$ so that the complete set of 
measurement and parameter errors is z* = (y;, y/2*, q*) .  By 
(A.12), there are matrices A1 and A2 such that the estimation 
errors are of the form 

A2 = (DTDl + DrD2 + I)-’(DTQT 0:s: - I )  

from which one obtains 

A1A; = (DTDl+ I ) - l (DTDl+ I)(DTD1 + DFD2 + I ) - l  
= (DTDl+ DrD2 + I ) - l  
=Var(q2 - q * ) .  (A.23) 

41 - q* = A ~ z * ,  q2 - q* = A ~ z * .  

Accordingly, the difference in the estimates has expected 
value of zero: 

Substituting this and its transpose into (A.19), one obtains 
E(q1 - q 2 )  = E[(ql - q * )  - ( q 2  - q*)]  

= ( A i  - Az)E(z*)  = 0. - q 2 )  = Var(q1 - q*)  - Var(q2 - 4*) .  (A.24) 

The covariance matrix for the difference is 

Since Var(q1 - q * )  = AlAT and Var(q2 - q*)  = A2AT, 
we have 

To test the agreement between the experiments, we may 
compute 

which will be a chi-square with n degrees of freedom. Now 
we want to specialize this to two scenarios. 

Scenario 1: Two independent sets of measurements are 
used to obtain parameter estimates q1 and q 2 ,  each starting 
from the same a priori information. Following the notation of 
Appendix 11, we write 

Accordingly, 

Substituting this and its transpose into (A.19), one obtains 
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